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Overview
• Partial differential equations (20 min)

• Examples
• Numerical solvers
• PINN

• Operator learning (30 min)
• Neural operator
• DeepONet
• Fourier neural operator

• Examples and extensions (30 min)
• Weather forecast
• And more



1. Introduction
Problems in science and engineering reduce to PDEs.



Example: heat equation

2D parabolic PDE

x y

Figure: Oleg Alexandrov

How long will my pan cool down?

https://commons.wikimedia.org/wiki/User:Oleg_Alexandrov


Example: heat equation

Spatial domain: D = [0,1]×[0,1]
Time domain: T = [0,1]
Points: 𝑥 = 𝑥, 𝑦 = 𝑥!, 𝑥" ∈ 𝐷, t ∈ 𝑇
Solution function (Temperature) 𝑢: 𝑇×𝐷 → ℝ

Heat equation:
𝑢# = Δ 𝑢

Where Δ 𝑢 = 𝑢$$ + 𝑢%%
“The change in time is equal to 2nd-order difference in space.”



Initial value problems

Heat equation:
𝑢# = Δ 𝑢

Initial value problem: given the temperature at time t=0,
What is the temperature a time t=1?
Given u(0,x), what is u(1,x)?



Problems with coefficients
2D elliptic PDE:

Input: a(x) Output: u(x)

My domain has two types of media, described by a(x)
Given a(x), what is u(x)?

∇𝑢 = 𝑢! , 𝑢"
Δ 𝑢 = ∇ & ∇𝑢



Numerical solver

Idea: discretize the problem onto some grid
Solve a multi-variable equation of {𝑢(𝑖, 𝑗)}, 𝑖 = 0,… , 10, 𝑗 = 0,… , 10
Solve a linear system Au = f



Numerical solver

Idea: discretize the problem onto some grid
Solve a multi-variable equation of {𝑢(𝑖, 𝑗) }, 𝑖 = 0,… , 10, 𝑗 = 0,… , 10

How to compute the derivative?
Finite difference method (FDM): approximate by its neighbor points

𝑢! 𝑥 = lim
#!→%

𝑢 𝑥 + 𝑑𝑥 − 𝑢 𝑥
𝑑𝑥

𝑢! 𝑥 ~
𝑢 𝑥 + 𝑑𝑥 − 𝑢 𝑥

𝑑𝑥

𝑢! 𝑖, 𝑗 ~
𝑢 𝑖 + 1, 𝑗 − 𝑢 𝑖, 𝑗

𝑑𝑥

𝑢! 𝑖, 𝑗𝑢! 𝑖 − 1, 𝑗 𝑢! 𝑖 + 1, 𝑗

𝑢! 𝑖, 𝑗 + 1

𝑢! 𝑖, 𝑗 − 1



Numerical solver

Pipeline:
1. Discretize the space
2. Write out a linear system
3. Solve the linear system

Common numerical methods:
• Finite difference methods
• Finite element methods
• Spectral methods
• Iterative methods

Trade-off: finer grids are more accurate, but also more expensive.



Physics-informed neural networks

Heat equation:
𝑢! = Δ 𝑢

PINN: M Raissi, P Perdikaris, GE Karniadakis

Physics-informed neural networks (PINNs)
• Idea: represent function 𝑢 as a neural network
• Compute the derivatives (𝑢#, Δ𝑢) using the chain rule
• Solve the system using gradient descent methods

https://scholar.google.com/citations?user=dCdmUaYAAAAJ&hl=en&authuser=1&oi=sra
https://scholar.google.com/citations?user=h_zkt1oAAAAJ&hl=en&authuser=1&oi=sra
https://scholar.google.com/citations?user=yZ0-ywkAAAAJ&hl=en&authuser=1&oi=sra


Recap: PINNs
Heat equation:

𝑢# = Δ 𝑢

PINN: M Raissi, P Perdikaris, GE Karniadakis

Pipeline:
• Initialize NN u(x)
• For N iterations
• Sample collocation points { 𝑥, 𝑡 }
• Compute the derivatives 𝑢# 𝑥, 𝑡 , Δ𝑢(𝑥, 𝑡)
• Minimize || 𝑢# − Δ𝑢 ||

https://scholar.google.com/citations?user=dCdmUaYAAAAJ&hl=en&authuser=1&oi=sra
https://scholar.google.com/citations?user=h_zkt1oAAAAJ&hl=en&authuser=1&oi=sra
https://scholar.google.com/citations?user=yZ0-ywkAAAAJ&hl=en&authuser=1&oi=sra


Recap: PINNs

PINN: M Raissi, P Perdikaris, GE Karniadakis

Pros:
• Simple and flexible
• No need to worry about stability conditions, etc
• Complex geometry, high-dim, inverse problem, etc
Cons:
• Optimization is tricky
• Less accurate than existing solvers (FDM/FEM)
• No guarantee of (optimization)

https://scholar.google.com/citations?user=dCdmUaYAAAAJ&hl=en&authuser=1&oi=sra
https://scholar.google.com/citations?user=h_zkt1oAAAAJ&hl=en&authuser=1&oi=sra
https://scholar.google.com/citations?user=yZ0-ywkAAAAJ&hl=en&authuser=1&oi=sra


2. Operator learning



Operator learning

Input: coefficient Output: solution

Operators are map between function space.
Given a dataset of input-output pairs, find the map (operator)

Input: initial Output: solution

F: a->u F: u0->u1



Operator learning
Operators are map between function space.
Learn the Operators from data (coefficients & solutions pairs).

• Fix an equation
• Multiple training instances
• Learn the mapping

Input: coefficients Output: solutions



Solve vs learn
Solving for a PDE instance 𝑢
approximate 𝑢(𝑥) in the spatial space.

learn the solution operator ℱ
interpolate 𝑢 in the function space.



Pipeline of operator learning

Supervised learning

Get a dataset {(a , u)} (existing solvers or experiments)
• Initialize NN, F: a->u
• For N epoch, For batches of data pairs (a, u)
• Compute the prediction F(a)
• Minimize ||F(a)-u||



Solve vs learn

Conventional methods:
Solve the equation 
By approximation on a mesh

Data-driven methods:
Learn the trajectory
From a distribution

Input: coefficients Output: solutions



Solve vs learn

Conventional methods:
• Solve for any parameters
• Worst case guarantees
• Consistency

Data-driven methods:
• Parameters from a distribution
• Less guaranteed
• Not “consistent”

Input: 
coefficients

Output: 
solutions



Architecture design

• Not vector-to-vector mapping.
• But function-to-function mapping. 

Continuous functionDiscretized vector



CNN vs Neural operators

Key idea: represent function & operator in mesh-invariant way 



3.1 Neural operator

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, 
Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar



Neural networks

f: x → y
Rn → Rm

Input
vector

x

Output 
vector

y

linear
function

Non-linearity
function



Neural operators

F: a(s) → u(s)
(Rn→Rm) → (Rn→Rm)

Input
function

a(s)

Output 
function

u(s)

Integral
operator

Non-linearity
operator



Approximation bound

For any continuous operator, there exists a two-layers neural 
operators can approximate it.

For the solution operator of Navier-Stokes equation, the
number of parameters depends sub-linearly on the error

Neural Operator: Learning Maps Between Function Spaces. Kovachki et. al.
On universal approximation and error bounds for Fourier Neural Operators. Kovachki et. al.



Graph-based neural operators

GKN MGKN

https://arxiv.org/abs/2003.03485 https://arxiv.org/abs/2006.09535 (Neurips2020)

https://arxiv.org/abs/2003.03485
https://arxiv.org/abs/2006.09535


Kernel convolution as 
message passing on graph

• Adjacency matrix = kernel matrix.
• Kernel integration = message passing 

Graph neural network



Graph Kernel Operator

Training pairs Construct 
graphs

Learn the kernel via
Message passing

Add new nodes; 
Run the kernel

New query 



3.2 Deep Operator Network

DeepONet: Lu Lu, Pengzhan Jin, George Em Karniadakis

https://arxiv.org/search/cs?searchtype=author&query=Lu%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Jin%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Karniadakis%2C+G+E


DeepONet

F: [a(x), y] → u(y)
[(Rn→Rm), Rn ]→ Rm

Input functions + query point → the solution at the query point

Input: a(x)

(y) u(y)

DeepONet: Lu Lu, Pengzhan Jin, George Em Karniadakis

https://arxiv.org/search/cs?searchtype=author&query=Lu%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Jin%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Karniadakis%2C+G+E


DeepONet

Input: a(x)

(y)

u(y)

Two networks:
• Branch net takes the input function
• Trunk net takes the query point

DeepONet: Lu Lu, Pengzhan Jin, George Em Karniadakis

https://arxiv.org/search/cs?searchtype=author&query=Lu%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Jin%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Karniadakis%2C+G+E


DeepONet and Neural operator

Two slightly different formulations.
Potentially one can be converted into the other.

Implementation difference:
• Neural operator is easier if input and output are fully observed

functions.
• DeepONet is easier when given sparse observation from

sensors a(x) and query u(y).

DeepONet: Lu Lu, Pengzhan Jin, George Em Karniadakis

https://arxiv.org/search/cs?searchtype=author&query=Lu%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Jin%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Karniadakis%2C+G+E


3.3 Fourier neural operator

https://arxiv.org/abs/2006.09535 (ICLR2021)
Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, 
Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar

https://arxiv.org/abs/2006.09535


Fourier neural operators

F: x(s) → y(s)
(Rn→Rm) → (Rn→Rm)

Input
functio

n
x(s)

Output 
function

y(s)

Convolution
operator

Non-linearity
operator



Fourier layer

Use convolution as the integral operator 
and implement with Fourier transform



Fourier layer

1. Fourier transform
2. Linear transform
3. Inverse Fourier transform



Fourier layer

The linear transform W outside keep the track of the location 
information (x) and non-periodic boundary



4. Experiments



Pathak et al. (2022), FourCastNet: A Global Data-driven High-resolution Weather Model 
using Adaptive Fourier Neural Operators, arXiv: https://arxiv.org/abs/2202.11214

Weather Forecast

Weather forecast: the AFNO
model on the ERA5 dataset

Input the current weather
variables, output the weather
at 6 hours later.





Pathak et al. (2022), FourCastNet: A Global Data-driven High-resolution Weather Model 
using Adaptive Fourier Neural Operators, arXiv: https://arxiv.org/abs/2202.11214

• Unprecedented skill on precipitation forecasts
• 6X higher resolution than other DL models
• 1000-member ensemble in a fraction of a second
• 4 to 5 orders of magnitude speedup over NWP
• 25000X smaller energy footprint

Weather Forecast



Gas saturation (SG)100,000m

Inject CO2
into the earth

Measure
CO2

migration

>800m below 
ground surface

20
0m

1

0

SG   (-)

Alternative injection well 
icons

FNO provides 10^5x speedup
compared to a conventional Finite Difference Method solver

CO2 injection





FNO is 10^5x faster than the FDM solver, less blurry compared to CNN

Ground truth

U-FNO Prediction

CNN Prediction

(-)

(-)

(-)

Animation of Gas Saturation values over 30 years



V=1e-4, zero-shot super-resolution



Bayesian inverse problem: 

We use a MCMC method, sampling initial conditions and evaluating them with the traditional 
solver and Fourier operator. The Fourier operator takes 0.005s to evaluate each initial 
condition, while the traditional solver takes 2.2s.



Plasticity

Multi-scale method: use neural operator to map from strain to stress 
on the unit cell; update macroscale with Abaqus solver.  



Plasticity

PCA-operator solves multi-scale plasticity problem (Burigede et. al.)



Ultrasound



lithography

Haoyu Yang et. al.



5. Extensions



PINO: physics-informed
neural operator

Zongyi Li*, Hongkai Zheng*, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, 
Kamyar Azizzadenesheli, Anima Anandkumar



PINO: Physics-informed neural operator

Data loss: compare prediction
and ground-truth solution

Equation loss: plug prediction
in PDE and compute residual



1. Pre-train
• operator-learning setting
• a family of PDE
• use the data loss (and equation loss)

2. test-time optimize
• solver setting (PINN)
• a specific instance
• use the equation loss

Neural operators use only the data. If the explicit form of the PDE is known,
we can combine neural operators with the PINNs setting.

PINO: PHYSICS-INFORMED NEURAL OPERATOR



• Pretrain improves both the convergence speed and final error.
• More robust to hyperparameters

Physics-informed neural operator
Standard cases (Burgers, Darcy, KF, Cavity): no need to use any data



• PINO gets 2% error on Re500 [2π x 2π x 1s]
• Easily generalize from one Re to another

Truth

PINO

Relative error: PINO: 0.9%, PINN:18.7%



• Pretrain improves both the convergence speed and final error.
• More robust to hyperparameters

Physics-informed neural operator

PINN: Raissi, Maziar; Perdikaris, Paris; Karniadakis, George Em



Physics-informed neural operator

If data is available: PINO can solve very challenging scenarios such as long-temporal
transient flow T=50, which is intractable to PINNs.



Physics-informed neural operator

Long-temporal transient flow: preserve the 400x speedup compared to the pseudo-
spectral solver.



Solving inverse problems

Backward PINO accurately solves inverse problem. 3000x speedup



Transfer Learning

Pre-train on Re100, fine-tune on Re500. Converge 3x faster.

Re100 Re500



Geometric-FNO

Zongyi Li, Zhengyu Huang, Burigede Liu, Anima Anandkumar



Geometric FNO

Previous FNO implementation relies on FFT. It can be only applied to rectangular
domains with a uniform grid. We want to extend FNO to different geometries.

Further, we want to learn solution operators mapping from the shapes to the solution,
and solve the inverse design problems.

Pipe

Airfoils



Geometric FNO

• Any boundary -> embed (Fourier continuation)

• Any mesh -> learned interpolation /DFT

• Any shape -> deform (adaptive/moving mesh)

• Any topology -> decompose (pants/handler decomposition)



boundary
For non-periodic boundary, we can embed the domain into a larger domain with periodic condition

Similar, for any obstacles and holes, we can fill in zeros.



Mesh

Given any input mesh, we first transform it to a uniform mesh.
We use the learned interpolation /discrete Fourier transform to reduce the interpolation error.



Shape

Given any input domain, we want to find a deformation (diffeomorphism)
To convert the domain into a regular one.



Adaptive meshes

Such deformation can be also used to construct adaptive meshes for multiscale structures

FFT computation mesh Adaptive mesh



Examples: elastic equation

A constant forcing is applied from the left. Given the shape, we want to predict the stress.
Unstructured mesh + irregular shape.

Input: shape Output: stress



Examples: elastic equation

Using discrete Fourier transform + embedding, the relative l2 error is only 5%

truth prediction error



Examples: elastic equation

Adaptive mesh: (x,y) Adaptive mesh: (θ,r)

Using adaptive meshes further improves the performance.

Train
Raw

Test
Raw

Test
DFT

Uniform 7% 10% 11%

X-Y deform 9% 10% 9%

Theta-R 6% 6% ~6%



Examples: Channel flow (pipe)

Error = 0.5%

truth

prediction

error



Examples: Airfoils

Error = 2%

truth

prediction

error



Examples: inverse design
Optimize the spline nodes to achieve the design objectives.

Pipe: optimize the upper (and lower) boundary

Airfoil: optimize the bounding box



PDE-observer

Yuanyuan Shi, Zongyi Li, Huan Yu, Drew Steeves, 
Anima Anandkumar, and Miroslav Krstic



MOTIVATING PROBLEM IN ROBOTICS

Given sensors placed on the body of airfoil/drone (boundary),
Can we estimate the velocity field (interior) for more accurate control?

Yuanyuan Shi, Zongyi Li, Huan Yu, Drew Steeves, Anima Anandkumar, and Miroslav Krstic



STATE ESTIMATION THROUGH PDE OBSERVER

• Given the partial observation, estimate the state.

• PDE for state estimation: Back-stepping PDE observer.

• The estimate converges to the truth (exponentially)

• Slow and not real-time.

• Our approach: Use FNO to emulate PDE efficiently

Sensor on boundary
y(t)

Full state
u(x, t)



Neural observer with FNO

Recurrent observer: make the estimation at each step recursively

Feedforward observer: make the estimate over a time interval each step.

Yuanyuan Shi, Zongyi Li, Huan Yu, Drew Steeves, Anima Anandkumar, and Miroslav Krstic



REACTION-DIFFUSION PDE
PRESCRIBED-TIME OBSERVER

2000x Speed up

Conventional PT Observer FNO Neural Observer

Chemical tubular reactor system:
Learn a time-dependent, fast-converging observer.

True system

Same convergence rate



FNO-transformer

John Guibas , Morteza Mardani , Zongyi Li , 
Andrew Tao, Anima Aanandkumar, Bryan Catanzaro



Fourier-based Transformer

Neural operator can be viewed as a continuous generalization of Transformers
• Attention mechanism is a kernel-integration.
• Query-key can be viewed a a low-rank decomposition of the kernel.
• Replace the kernel by Fourier transform.

Shuhao Cao. Choose a Transformer: Fourier or Galerkin



Fourier-based Transformers

Lee-Thorp et. al. FNet: Mixing Tokens with Fourier Transforms 
Rao et. al. GFNet: Global Filter Networks for Image Classification 





Chaotic system

Miguel Liu-Schiaffini, Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, 
Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar



Chaotic system

Chaotic systems are intrinsically 
unstable. Smaller errors will 
accumulate and make the simulation 
diverge from the truth.

Can we predict long-time trajectories 
that, while eventually diverging from 
the truth, still preserve the same orbit 
(attractor) of the system and its 
statistical properties?

Navier-Stokes Kuramoto-Sivashinsky



Semigroup and Markov neural operator

Use Markov neural operator to model the local evolution.

Compose the operator as a semigroup



KS equation

Neural operator captures the invariant measures of chaotic systemFNO captures the trajectory of chaotic systems for a longer period compared to RNNs.



Markov neural operator 
captures the invariant statistics



Markov neural operator 
simulates the global attractor



Enforcing dissipativity: Motivations

Many chaotic systems have the
dissipative property, which pushes the
dynamics back to the attractor.

Without such dissipativity, the model
is prone to blow up.

Accelerating flow



Methods for Enforcing dissipativity

Enforce dissipativity by augmenting virtual data points around the raw data
(equivalent to adding a loss term)

Red: the raw data (attractor)
Blue shell: the region to add data points.

⍺ is a weighting hyperparameter, Φ is the model with 
inputs 𝑥 and weights θ, 0 < 𝜆 < 1 is the factor for scaling 
down the inputs, and 𝜈 is some probability measure.



Lorenz 63 learned flow maps

Red points are training points on attractor, blue circles represents shell where dissipativity is enforced.

Before After True system



Kolmogorov flow with enforced dissipativity

Before: quickly blowing-up (10^16) After: converge back to the attractor

Start with an initial condition outside the attractor



Kolmogorov flow with enforced dissipativity

Distribution of kinetic energy Distribution of dissipation Spectrum of vorticity

The distribution of dissipation is improved



Self-similar flow

Haydn, Zongyi Li, Yixuan Wang, Thomas Hou, Anima Anandkumar



Blowup

The existence of the solution to the Navier-Stokes equation is one of the most interesting
problems in PDE.

Can we construct a counterexample (blowup)?

G. Luo and T. Y. Hou (2014)
Blowup of the Euler’s equation



Blowup

Idea: find a blowup scenario with a self-similar structure, such as u->inf as t->T.

Y. Wang, C.-Y. Lai, J. G´omez-Serrano, and T. Buckmaster. Self-similar blow-up profile for the boussinesq equations via a physics-informed neural network.

The original solution u is singular, but the profile function U is smooth.
Need to find the profile parameters c1 and c2 (inverse problem).



Blowup

We can use the physics-informed methods (PINN and PINO) to discover such profiles.

Pros: can find the profile parameters (inverse problem)
Cons: less accurate (10^-5) compared to the conventional solver (10^-10, adaptive FEM).

Since the Euler equation is highly sensitive, extreme accuracy is needed.

Y. Wang, C.-Y. Lai, J. G´omez-Serrano, and T. Buckmaster. Self-similar blow-up profile for the boussinesq equations via a physics-informed neural network.

Figure (3) from Wang et. al.: PINN vs the FEM solver



Blowup

Use PINO to improve the optimization landscape:
• High frequency (singular) structures are challenging for neural networks
• Use the adaptive PINO (like the adaptive FEM) to better capture the singularity

Computation space Physical space

G. Luo and T. Y. Hou (2014)



Reference
Arxiv:
https://arxiv.org/abs/2003.03485
https://arxiv.org/abs/2006.09535
https://arxiv.org/abs/2010.08895

Code:
https://github.com/zongyi-li/graph-pde
https://github.com/zongyi-li/fourier_neural_operator

Blog posts: 
https://zongyi-li.github.io/blog/2020/graph-pde/
https://zongyi-li.github.io/blog/2020/fourier-pde/

https://arxiv.org/abs/2003.03485
https://arxiv.org/abs/2006.09535
https://arxiv.org/abs/2010.08895
https://github.com/zongyi-li/graph-pde
https://github.com/zongyi-li/fourier_neural_operator
https://zongyi-li.github.io/blog/2020/graph-pde/
https://zongyi-li.github.io/blog/2020/fourier-pde/

